
Lattice scale-free networks with weighted linking

Kongqing Yang
Institute of Applied Physics, Jimei University, Xiamen 361021, China

and School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China

Liang Huang
Institute of Theoretical Physics, Lanzhou University, Lanzhou 730000, China

Lei Yang
Center for Nonlinear Studies, Hong Kong Baptist University, Hong Kong, China

and Department of Physics, Lanzhou University, Lanzhou 730000, China
(Received 10 December 2003; published 12 July 2004)

Recently, models of the scale-free(SF) networks on lattices were investigated, which consider the influence
of the embedded space on the networks. Since a lot of real networks exist on the 2D global surface, it is helpful
to discuss these models. In this paper, based on the lattice SF networks model, a linking weight is added, thus
an additional parameter which can control the clustering coefficient is introduced. Depending on the linking
weight, the properties of the model change smoothly from the lattice SF model to the SF random graphs.
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The complex networks provide an effective description
for many real systems in nature and society[1–3]. In the last
decade, many aspects and objects of complex networks have
been studied[4–8] (for more comprehensive knowledge, see
reviews on the subject[9]). It has been revealed that many of
the real networks such as Internet, co-author networks, meta-
bolic networks[1] etc., hold a scale-free(SF) degree distri-
bution,Pskd,k−l. Many SF network models have been pro-
posed and deeply studied, including the generalized random
graphs[4], the growing Barabasi-Albert(BA) model[5] and
vast of its variations(see Ref.[9], and references there), and
the lattice embedded models of SF networks[10,11]. Since
human’s actions always occur in the global surface, consid-
ering the lattice models becomes helpful. Recently, Rozen-
feld, Cohen, ben-Avraham, and Havlin considered that the
spatial distance can affect the connection between the nodes,
and proposed a lattice embedded scale-free(LESF) network
model[10]. Rozenfeldet al.give a rectangle 2D lattice of the
size L3L, with the periodic boundary conditions. For each
site, they assign a random degreek taken from the scale-free
distribution,Pskd,k−l, m,k,K. Then select a site at ran-
dom and connect it to its closest neighbors until its previ-
ously assigned degreek is realized, or up to a cutoff distance
Ac

Îk (note that linking to its neighboring sites is not always
possible, in case that the degree quota of the target site is
already filled). This process is repeated for all sites of the
lattice. Here, the clustering coefficients and average network
distances of LESF model are shown by simulation in Fig. 1,
cutoff is set to beAc=7. Figure 1(a): the clustering coeffi-
cient vs network size. For large networks, they tend to reach
a constant value, and for smalll, these networks have large
clustering coefficients. Figure 1(b): the average distance vs
network size. In most cases the dependence of average dis-
tance on network size is of logarithm form, while in certain
cases(for largel) the dependence has a form of,ÎN.

In this paper, a weighted linking function is added to

LESF model(WLESF). The model is generated as follows:
(1) a lattice with periodic boundary conditions of sizeL
3L is assumed, upon which the network will be embedded;
(2) for each node an integerk is assigned as the largest de-
gree it could have, keeping that the distribution ofk is a
power law function:Pskd,k−l, m,k,K; (3) a node is ran-
domly selected(say, i, with degreeki) from the lattice, and
according to a Gaussian weight function

FIG. 1. Properties of LESF networks:(a) clustering coefficients
of networks with different power law exponents(l=2.2 for squares,
2.5 for circles, 3.0 for up triangles, 4.0 for down triangles, and 5.0
for diamonds) and different sizes, as thex axis shows;(b) average
distances, the same symbols as those in(a) represent the same val-
ues ofl. Inset of(b): average distanced vs lattice side lengthL.
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f isrd = De−sr/Rid
2
, s1d

it selects other nodes(say, j) and establishes a connection
between them ifj ’s degree quota is not filled yet and there
exists no previous connection betweeni and j , until its de-
gree quotaki is filled or until it has tried 1/f is3Rid times[12],
the latter case could be caused by saturation, that is, almost
all its spatial neighbors have already fulfilled their degree
quotas;(4) the process is repeated throughout all the nodes
on the lattice. The normalization constantD, defined by
e1

`dr2prf isrd=1, is spA2kid−1e1/A2ki, and Ri =A3Îki, serves
as the characteristic radius of the region that nodei can al-
most freely connect. The cutoff parameterA influences the
tightness of local clusters and therefore the topological prop-
erties of the networks. The Gaussian form of the weight
function is chosen because it is ubiquitous in many natural
processes and scientific fields such as physics, biology, sta-
tistics, etc. Moreover, it puts natural cutoffs on the model,
not the 3Ri cutoff, but a more constrained one, as will be
discussed later(Fig. 8).

Using computer simulation, we discuss the properties of
the WLESF model, such as the average network distanced
=2/NsN−1dok,ldk,l, where dk,l is the network distance be-
tween nodek and l, say, the number of edges of the shortest
path between them; the clustering coefficientC
=s1/Ndois2Ei /kiski −1dd, whereki is the edge degree of node
i, andEi is the number of edges between its neighbors; the
degree distribution, etc. As shown in Fig. 2, the power law
degree distributions of WLESF model are preserved, since
all the values ofl are greater than 2[10].

The direct chemical shell[10] structure is shown in Fig. 3,
with different gray levels depicting different shells consisting
of nodes with the same network distance from a given node,
which is assumed to be the central node in each graph. Along
with WLESF, the LESF model and the scale-free random
model(SFR) are also presented. Here,l is fixed to 3.0 for all
the three models, andA is varied as 1,2,3, and 5 in WLESF.
As A goes larger, the shell boundary blurs and finally disap-
pears as that of random graphs. The shell graph of WLESF
shows an obvious transition from the LESF model to the
SFR model.

In Fig. 4, the clustering coefficients of the three models
are shown forl=2.5,3.0,5.0 in(a), (b), and (c), respec-
tively. For both the LESF model and the WLESF model, the
clustering coefficients tend to reach a constant value, which
varies with different parameter values ofl andA. For each
given degree exponentl, the larger theA is, the looser the
local cluster is, as a result, the smaller the clustering coeffi-
cient. For each fixed cutoff parameterA, asl goes smaller,
there are more nodes with large degrees on average, and
since any two nodes which have common network neighbors
must be spatial neighbors themselves, so the probability that
the two nodes connect each other is larger, hence the value of
clustering coefficients goes up. As in WLESF, the parameter
A can vary continuously, so we can generate a network with
a given degree distribution and a given clustering coefficient
value between that of LESF networks and that of SFR net-
works. This is shown in Fig. 4(d). Furthermore, for data of
the WLESF model, there is a power law inCsAd, and more
clear in the cases ofl=3.0 andl=5.0, since in these cases,

FIG. 2. Degree distribution of the WLESF model with network
size N=105, andA=1, the most restricted situation in the simula-
tion, and of different values ofl.

FIG. 3. (Color online) Chemical shells of WLESF model, to-
gether with those of LESF model and SFR model. Each shell graph
has a size of 1953195.

FIG. 4. Clustering coefficients of LESF, WLESF, and SFR
model. Lines in graphs(a), (b), and (c) from up to down are the
LESF model (squares), WLESF model withA=1,2,3,5,7, and
SFR model(right toward triangles). (d) Clustering coefficientsC vs
the cutoff parameterA in the WLESF model, in a log-log scale, for
N=260 000(the last data of WLESF model in(a), (b), and(c)) and
l=2.5,3.0,5.0 for squares, circles, and triangles, respectively; the
first and last data of each line are that of the LESF model and SFR
model, respectively. The values ofA for these points are adjusted to
fit the curve.
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as Figs. 4(b) and 4(c) show, the network size 260 000 seems
large enough for clustering coefficients to be independent of
network size.

Figure 5 shows the average distances of the models. In-
stead ofd, ln N (or even ln lnN [13]) for various small
world models(as SFR model, shown in the graph), for large
l and largeN, the average distance of WLESF model obeys
a law of d,ÎN (or d,L, whereL is the side length of the
lattice). Considering an ideal network that is clustered uni-
formly, for each cluster, it hasNc nodes, a square area with

edgelc and an average network distancedc, for simplicity it
is in addition assumed that two adjacent clusters have only
one common node, and each cluster has eight neighbors, as
that in a rectangular lattice. Periodic boundary conditions are
applied. Suppose that the network hass2n+1d2 clusters, with
spatial width L=s2n+1dlc. A simple computation would
yield the average distance of the network to bed=sdc/3d
3s4n2+10n+3d / s2n+1d. Note that forn large, we haved
, 2

3dcn, or d, 1
3dcL, or else in terms ofN, d,ÎN. Whenn

@1, the boundary conditions can be ignored so the assump-
tion of periodic boundary conditions is not crucial to the
result. In case of percolation on SF networks, at the critical
point, there appears the same dependence of average network
distance on the size of the spanning cluster[14].

Percolations[14–18] on the models are also considered.
As shown in Fig. 6, there is a correlation of clustering and
the percolation transition pointpc, wherepc is defined as the
value of percolation strength when the average distance of
the spanning clusterdS peaks. For both intentional and ran-
dom percolations, when clustering coefficient is big, as Fig.
3(b) shows, the percolation transition point is small, that is,
when a network is heavily clustered, it would be less stable
under attacks, either by intentional or by random. Since the
WLESF network is tuned by cutoff parameterA, a depen-
dence ofpc on A is expected, and is shown in Fig. 7. Al-
though in case ofl&3.0, there would be no uncommonpc
for random percolations in the limit ofN→` [18], for a
given network size, considering what factors influence per-
colation may be useful to understand the network structure.

In Ref. [10], a cutoff distance for each node with degreek
is set byAc

Îk. In the WLESF model, from the connection
probability fsrd, a cutoff radiusR depending on the degree of

FIG. 5. Average distances of WLESF and SFR model forl
=2.5 (a), l=3.0 (b), andl=5.0 (c). In each graph, the lines from up
to down are the WLESF model withA=1,2,3,5,7, and SFR
model. The left parts have linear-log scales withx-axis depictsN,
while the right parts have linear-linear scale withx-axis depicts
lattice side lengthL or ÎN. Comparisions could be made to see that
there are transitions ofd, ln N to d,L whenl goes larger andA
goes smaller.

FIG. 6. Properties of percolations on LESF(solid lines),
WLESF (dashed lines,A=1 here), and SFR(dashed-dotted-dotted
lines) networks when a fractionp of the nodes are removed. For all
the three models,N=10000, l=3.0 and kkl=8. The left part
[(a),(c)] is of intentional attacks and the right part[(b),(d)] is of
random attacks.P(infinity) is the proportion of the largest cluster
during attacks to the original size of the network;dS is average
distance of the largest cluster(or spanning cluster in terms of per-
colation theory).

FIG. 7. Percolation transition pointpc vs cutoff parameterA.
The upper and lower boundaries indicate the values ofpc of SFR
and LESF model, respectively.(a) is for intentional attacks and(b)
is for random attacks. For each data,N=10000,l=3.0, andkkl=8.

FIG. 8. Effects of cutoffAc in the LESF model, forl=5.0
(1 for Ac=3.5, 3 for Ac=7.0). (a) The clustering coefficientC vs
networks sizeN, triangles are the WLESF model with the same
value ofl andA=1, used for comparison.(b) The average network
d distance vs the side length of the latticeL.
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the central node andA is posed bye1
Rdr2prf srd=b, whereb

is a real number and close to 1. Forb equals 0.999 and for
large k, R is almostAÎ7k (Î7 is not the accurate number,
sinceb could be actually smaller). SoAc<Î7A, and analysis
about cutoff lengths and applications in[10] would be also
applicable in this WLESF model, with substitutingÎ7A for
Ac. Although both of the models have local regions for a
node to connect, as set by cutoff radius, the two models are
different in the sense that, for a given node, it connects to its
nearest neighbors for the LESF model, but for the WLESF
model, it connects to its neighbors in the region almost ran-
domly. In this sense,Ac influence little to the clustering prop-
erty but much to the network distance, as Fig. 8 shows, butA
both.

In summary, we have studied a linking weighted SF net-
work embedded on a 2D Euclidean lattice and compared its

statistical properties with the LESF and the SFR networks.
Using computer simulations, the statistical properties of
these models are investigated. It can be seen that the WLESF
model gives a smooth transition from LESF to SFR. It means
that we can control the degree distribution(LESF, SFR can
also), the network distances(LESF can) and the clustering
coefficients in the model. Then the model provides more
possibilities for approaching real networks with certain re-
quired properties.
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