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Lattice scale-free networks with weighted linking
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Recently, models of the scale-fré8F networks on lattices were investigated, which consider the influence
of the embedded space on the networks. Since a lot of real networks exist on the 2D global surface, it is helpful
to discuss these models. In this paper, based on the lattice SF networks model, a linking weight is added, thus
an additional parameter which can control the clustering coefficient is introduced. Depending on the linking
weight, the properties of the model change smoothly from the lattice SF model to the SF random graphs.
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The complex networks provide an effective descriptionLESF model(WLESP. The model is generated as follows:
for many real systems in nature and socigity3]. In the last (1) a lattice with periodic boundary conditions of site
decade, many aspects and objects of complex networks havel is assumed, upon which the network will be embedded;
been studied4—8] (for more comprehensive knowledge, see(2) for each node an integéris assigned as the largest de-
reviews on the subje¢®]). It has been revealed that many of gree it could have, keeping that the distributionlofs a
the real networks such as Internet, co-author networks, met&ower law functionP(k) ~k™, m<k<K; (3) a node is ran-
bolic networks[1] etc., hold a scale-fre¢SF) degree distri-  domly selectedsay, i, with degreek;) from the lattice, and
bution, P(k) ~ k™. Many SF network models have been pro- according to a Gaussian weight function
posed and deeply studied, including the generalized random

045

graphs[4], the growing Barabasi-AlbetBA) model[5] and D\“\D\D\D_D _D(_a)u
vast of its variationgsee Ref[9], and references thereand 04 ~o_ ‘D RD
the lattice embedded models of SF netwofk8,1]. Since 0.35 O ~0—0—0—0—o0—o0— ¢
human’s actions always occur in the global surface, consid- O 0a]®ba
ering the lattice models becomes helpful. Recently, Rozen-

feld, Cohen, ben-Avraham, and Havlin considered that the 025y

spatial distance can affect the connection between the nodes, A A S S S S
and proposed a lattice embedded scale-fteeSF) network 02] omo—0—o—0—o0—o—0—c—0 |
model[10]. Rozenfeldet al. give a rectangle 2D lattice of the 10° 10° 10* 10° 10°
sizeL X L, with the periodic boundary conditions. For each N

site, they assign a random degietaken from the scale-free 3 ® 5
distribution, P(k) ~ k™, m<k<K. Then select a site at ran- 30 0/ %0 / ]
dom and connect it to its closest neighbors until its previ- 0/0/ e L g
ously assigned degréeis realized, or up to a cutoff distance 20, OQ/V/Z:Z 10 / |
Ak (note that linking to its neighboring sites is not always ° e = 8, ~ v
possible, in case that the degree quota of the target site is 0 200 ‘“’If 600 800 -~ V/v/
already filled. This process is repeated for all sites of the 10 O/Oﬁ " N
lattice. Here, the clustering coefficients and average network = EZZZ :g:é:ﬁ:o
distances of LESF model are shown by simulation in Fig. 1, 8282 ,::9:8: f—n—o—u"

cutoff is set to beA.=7. Figure 1a): the clustering coeffi- 10° 10° 10* 10° 10°

cient vs network size. For large networks, they tend to reach N

a constant value, and for smal| these networks have large i, 1. properties of LESF networké) clustering coefficients

clustering coefficients. Figure(l): the average distance Vs of networks with different power law exponerts=2.2 for squares,

network size. In most cases the dependence of average diss for circles, 3.0 for up triangles, 4.0 for down triangles, and 5.0

tance on network size is of logarithm form, While_in certain for diamonds and different sizes, as theaxis shows{b) average

casegfor large\) the dependence has a formefyN. distances, the same symbols as thos@)mepresent the same val-
In this paper, a weighted linking function is added to ues of\. Inset of(b): average distance vs lattice side lengttt..
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FIG. 3. (Color onling Chemical shells of WLESF model, to-
K gether with those of LESF model and SFR model. Each shell graph

FIG. 2. Degree distribution of the WLESF model with networ has a size of 195 195.

size N=10°, and A=1, the most restricted situation in the simula-

tion, and of different values of. In Fig. 4, the clustering coefficients of the three models

are shown forn=2.5,3.0,5.0 in(a), (b), and (c), respec-
fi(r) = De—(r/Ra)z, (1) tively. For both the LESF model and the WLESF model, the

clustering coefficients tend to reach a constant value, which
it selects other nodegsay, j) and establishes a connection varies with different parameter values »fand A. For each
between them if's degree quota is not filled yet and there given degree exponeix, the larger theA is, the looser the
exists no previous connection betweeand j, until its de-  local cluster is, as a result, the smaller the clustering coeffi-
gree quotd; is filled or until it has tried 11,(3R,) times[12], cient. For each fixed cutoff paramet&r as\ goes smaller,
the latter case could be caused by saturation, that is, almotitere are more nodes with large degrees on average, and
all its spatial neighbors have already fulfilled their degreesince any two nodes which have common network neighbors
guotas;(4) the process is repeated throughout all the nodesust be spatial neighbors themselves, so the probability that
on the lattice. The normalization constabt defined by the two nodes connect each other is larger, hence the value of
Jidr2mrfi(r)=1, is (WAzki)_lellAzki, andR=Ax \k, serves clustering coeffi_cients goes up. As in WLESF, the parameter
as the characteristic radius of the region that nbdan al- A can vary continuously, so we can generate a network with
most freely connect. The cutoff parameterinfluences the @ given degree distribution and a given clustering coefficient
tightness of local clusters and therefore the topological propvalue between that of LESF networks and that of SFR net-
erties of the networks. The Gaussian form of the weightVorks. This is shown in Fig. ). Furthermore, for data of
function is chosen because it is ubiquitous in many naturaihe WLESF model, there is a power law @A), and more
processes and scientific fields such as physics, biology, st&lear in the cases 0f=3.0 and\=5.0, since in these cases,
tistics, etc. Moreover, it puts natural cutoffs on the model,

not the &R, cutoff, but a more constrained one, as will be o R o B
discussed latefFig. ). 10"] ESgo—o—ooo o 10 TNG 2o o0 o o
Using computer simulation, we discuss the properties of 10° i
the WLESF model, such as the average network distance -k 10° e
=2/N(N-1)Z dy,, wheredy, is the network distance be- £ (a) 4 4041(0) ™
tween nodek andl, say, the number of edges of the shortest g 0w w0 0y w0 10 w00 10y
path between them; the clustering coefficien® g 4=5.0
=(1/N)Z;(2E;/ki(k;— 1)), wherek; is the edge degree of node g 0pEE i s o0
i, andE; is the number of edges between its neighbors; the o 1°j s \3;5;;;52; 1°j
degree distribution, etc. As shown in Fig. 2, the power law 124 S :g,
degree distributions of WLESF model are preserved, since 1041(¢) I 10°
all the values o\ are greater than PLO]. 1¢¢ 10° 10 10

The direct chemical she]llLO] structure is shown in Fig. 3, N

with different gray levels depicting different shells consisting FIG. 4. Clustering coefficients of LESF, WLESF, and SFR
of nodes with the same network dlstancg from a given node, el Lines in graphsa), (b), and (c) from u’p to down are the
which is assumed to be the central node in each graph. Along=gp model(squares WLESF model withA=1,2,3,5,7, and
with WLESF, the LESF model and the scale-free randomgeg modelright toward triangles (d) Clustering coefficient€ vs
model(SFR are also presented. Heveis fixed to 3.0 for all  ihe cutoff parameteh in the WLESF model, in a log-log scale, for
the three models, andlis varied as 1,2,3, and 5 in WLESF. N=260 000(the last data of WLESF model @), (b), and(c)) and

As A goes larger, the shell boundary blurs and finally disap\=2.5,3.0,5.0 for squares, circles, and triangles, respectively; the
pears as that of random graphs. The shell graph of WLESKyst and last data of each line are that of the LESF model and SFR

shows an obvious transition from the LESF model to themodel, respectively. The values Affor these points are adjusted to
SFR model. fit the curve.
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9 s 360 600 S
10 11° 010 3 ? 5 The upper and lower boundaries indicate the valuep.aff SFR
e] 1 / s (©2) / and LESF model, respectivelga) is for intentional attacks angb)
g ¢ is f dom attacks. F h daltés 10000,\=3.0 ky=8.
° . /o// 0 /O//A is for random attacks. For eac - , , and(k)
/O/A/A v O/O/A/A/v
G - Mﬁ/;”% > . . L
B T S 0 300 600 edgel, and an average network distarnae for simplicity it
N L is in addition assumed that two adjacent clusters have only

one common node, and each cluster has eight neighbors, as

FIG. 5. Average distances of WLESF and SFR modelXor ., i 4 vectangular lattice. Periodic boundary conditions are

=2.5(a), A=3.0(b), andA=5.0(c). In each graph, the lines from up . P .
to down are the WLESF model with=1,2.3.5.7. and SFR applied. Suppose that the network tds+ 1)< clusters, with

model. The left parts have linear-log scales withxis depictsN, S_pat'al width L:(anl)lc' A simple computation would

while the right parts have linear-linear scale wittaxis depicts ~ Yield the average distance of the network to dve(d./3)

lattice side length. or \N. Comparisions could be made to see that X (4n°+10n+3)/(2n+1). Note that forn large, we haved

there are transitions af~In N to d~L when\ goes larger andh ~ ~ %dcn, ord~ %ch, or else in terms oN, d~vN. Whenn

goes smaller. > 1, the boundary conditions can be ignored so the assump-
tion of periodic boundary conditions is not crucial to the

as Figs. 4b) and 4c) show, the network size 260 000 seemsresult. In case of percolation on SF networks, at the critical

large enough for clustering coefficients to be independent ofoint, there appears the same dependence of average network

network size. distance on the size of the spanning clusfiet].

Figure 5 shows the average distances of the models. In- Percolationg14—1§ on the models are also considered.
stead ofd~InN (or even InInN [13]) for various small As shown in Fig. 6, there is a correlation of clustering and
world models(as SFR model, shown in the gragpfor large  the percolation transition poimt,, wherep, is defined as the
A and largeN, the average distance of WLESF model obeysvalue of percolation strength when the average distance of
a law ofd~ VN (or d~L, whereL is the side length of the the spanning clusteilg peaks. For both intentional and ran-
lattice). Considering an ideal network that is clustered uni-dom percolations, when clustering coefficient is big, as Fig.
formly, for each cluster, it habl, nodes, a square area with 3(b) shows, the percolation transition point is small, that is,

when a network is heavily clustered, it would be less stable

.o Intentional attack = Random attack under attacks, either by intentional or by random. Since the
S0 0:| WLESF network is tuned by cutoff parametdr a depen-
= dence ofp. on A is expected, and is shown in Fig. 7. Al-
£ 0 0. though in case ok =3.0, there would be no uncommgqmn
T ° 04 for random percolations in the limit dl— [18], for a
%2 (a) i\ *4 b) N given network size, considering what factors influence per-
%85 07 o0z 03 04 05°80 0z 04 08 08 10 colation may be useful to understand the network structure.
18 @ In Ref.[10], a cutoff distance for each node with degkee
6ol 2 is set byA.vk. In the WLESF model, from the connection
< probability f(r), a cutoff radiusR depending on the degree of
30 J : ———
r/~/p T p, 02 ¥ X ¥ ¥ ¥ % ¥ ¥ H go +
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P ¢] o A - 40 * o
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FIG. 6. Properties of percolations on LES®Eolid lineg, “aa AAaa xx b
WLESF (dashed linesA=1 herg, and SFR(dashed-dotted-dotted (:z) e 0 ®)
lines) networks when a fractiop of the nodes are removed. For all 10° 10 ','\P 10 0 300 |_600 900
the three modelsN=10000, A=3.0 and (ky=8. The left part
[(@),(c)] is of intentional attacks and the right pdtb),(d)] is of FIG. 8. Effects of cutoffA; in the LESF model, forn=5.0

random attacksP(infinity) is the proportion of the largest cluster (+ for A;=3.5, X for A;=7.0). (a) The clustering coefficient vs
during attacks to the original size of the netwodg is average networks sizeN, triangles are the WLESF model with the same
distance of the largest clustéor spanning cluster in terms of per- value ofA andA=1, used for comparisoigb) The average network
colation theory. d distance vs the side length of the lattice
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the central node and is posed by ?erwrf(r)=b, whereb statistical properties with the LESF and the SFR networks.
is a real number and close to 1. Aplequals 0.999 and for Using computer simulations, the statistical properties of
large k, R is almostAy7k (V7 is not the accurate number, these models are investigated. It can be seen that the WLESF
sinceb could be actually smallgrSoA,~ y7A, and analysis model gives a smooth transition from LESF to SFR. It means
about cutoff lengths and applications [ih0] would be also  that we can control the degree distributiGrESF, SFR can
applicable in this WLESF model, with substitutingA for  alsg), the network distanced ESF can and the clustering

A.. Although both of the models have local regions for acoefficients in the model. Then the model provides more

node to connect, as set by cutoff radius, the two models argossibilities for approaching real networks with certain re-
different in the sense that, for a given node, it connects 10 it ired properties.

nearest neighbors for the LESF model, but for the WLESF

model, it connects to its neighbors in the region almost ran- We thank Dr. Yong Zhang for valuable discussions. L.H.

domly. In this sensé)\. influence little to the clustering prop- is grateful to his teammates for their kind help. The work is

erty but much to the network distance, as Fig. 8 showsAbut supported by the China National Natural Sciences Founda-

both. tion with Grant No. 49894190 of a major project and the
In summary, we have studied a linking weighted SF net-Chinese Academy of Science with Grant No. KZCX1-sw-18

work embedded on a 2D Euclidean lattice and compared itef a major project of knowledge innovation engineering.
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